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Abstract—Recently, a formal requirements method called
SCR (Software Cost Reduction) was used to specify software
requirements of mission-critical components of three NASA
systems. The components included a fault protection engine,
which determines how a spacecraft should respond to a de-
tected fault; a fault detection, isolation and recovery compo-
nent, which, in response to an undesirable event, outputs a
failure notification and raises one or more alarms; and a dis-
play system, which allows a space crew to monitor and con-
trol on-orbit scientific experiments. This paper demonstrates
how significant and complex requirements of one of the com-
ponents can be translated into an SCR specification and de-
scribes the errors detected when the authors formulated the
requirements in SCR. It also discusses lessons learned in us-
ing formal methods to document the software requirements
of the three components. Based on the authors’ experiences,
the paper presents several recommendations for improving
the quality of requirements specifications of safety-critical
aerospace software.

1. INTRODUCTION

In a landmark article published in 1987 [4], Fred Brooks
states that

The hardest single part of building a software system is decid-
ing what the requirements are . . . No other part of the work so
cripples the resulting system if done wrong . . . [or] is as diffi-
cult to produce and hard to fix later on.

Almost twenty years later, eliciting, representing, and or-
ganizing requirements remains one of the most challenging
problems in software development. Recently, a group of
internationally known software experts met at a workshop,
sponsored by NSF and the EU, whose goal was to define the
most important problems in software development. One of
the most difficult problems discussed at the workshop was
that of eliciting and representing software requirements.

One method that has been formulated to specify the required
externally visible behavior of safety-critical and mission-
critical software systems is the SCR (Software Cost Reduc-
tion) requirements method. Formulated in the late 1970s to
specify the requirements of the Operational Flight Program
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of the U.S. Navy’s A-7 aircraft, the SCR method was de-
signed to improve the quality of software requirements by
documenting them in a manner that is unambiguous, precise,
and readable. During the 1980s and the early 1990s, many
companies, including Bell Laboratories, Grumman, Ontario
Hydro, and Lockheed, used the SCR method to develop real-
world systems. However, the application of SCR was limited
because either no tools or only weak tools were available to
support the method.

To provide powerful, robust tool support customized for SCR,
NRL began developing the SCR toolset in 1994. The current
toolset includes an editor for constructing the specification,
a dependency graph browser for displaying variable depen-
dencies, a consistency checker to automatically detect well-
formedness errors (such as missing cases), a simulator for
validating the specification, an invariant generator for deriv-
ing invariant properties from the specification [17], a model
checker and a theorem prover for checking application prop-
erties [10], an automatic code generator for constructing ef-
ficient source code from the SCR specification [20], and an
automatic test case generator for constructing tests from the
SCR specification [7].

To provide formal underpinnings for the method, NRL has
developed a formal model which defines the semantics of
SCR requirements specifications [12]. SCR’s underlying
computational model is a synchronous variation of the classi-
cal state machine. Because SCR specifications are expressed
in a user-friendly tabular notation rather than more complex
notations (e.g., a higher-order or temporal logic) or a spe-
cialized computational model (such as CSP), SCR’s start-up
cost is lower than that of many other “formal methods” tools.
Moreover, applying SCR enables detection and removal of re-
quirements errors early in the software lifecycle when errors
are much cheaper to fix than errors detected later, for exam-
ple, during testing. Another benefit is that the SCR method
and tools can help developers construct a specification that
is unambiguous, concise, readable, and organized as a refer-
ence document. Such a specification facilitates both human
and mechanical error detection.

Currently, several sites of Lockheed Martin are using the SCR
tools to specify and analyze a number of avionics functions,
such as flight navigation, flight control and management, and
airborne traffic and collision avoidance. Many of these sites
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use the SCR tools in conjunction with an automatic, test case
generator called T-VEC [3]. Lockheed is also using the SCR
tools in developing software for the Joint Strike Fighter.

The utility of formal methods and their support tools in an-
alyzing SCR and other formally represented requirements of
safety-critical systems has been described in many previous
papers and reports. For example, in 1998, Easterbrook et al.
described the utility of formal tools, including SCR and PVS,
for detecting ambiguity, missing assumptions, and other de-
fects in requirements specifications of spacecraft fault pro-
tection systems [5]. Also in 1998, our group described the
use of model checking to detect a serious defect in the con-
tractor specification of a safety-critical military system [13].
More recently, we described how both the TAME front-end
to PVS and SCR were used in the formal specification and
verification of a security-critical embedded system as part of
a Common Criteria evaluation [11].

Rather than focus on the utility of advanced verification tech-
niques, this paper describes the construction of a formal re-
quirements specification in SCR and how practitioners can
produce such a specification. Once available, a formal speci-
fication can be analyzed with both light-weight tools, such as
the SCR consistency checker, or with advanced verification
tools, such as model checkers and theorem provers, to weed
out errors, and thus a high-quality requirements specification
can be constructed.

In most previous efforts, formal methods experts have formu-
lated the requirements specifications, and, in most cases, have
discarded these specifications after the analysis tools were ap-
plied. Unlike these earlier efforts, our goal is to produce a re-
quirements specification that is useful, not only for purposes
of formal verification, but throughout the system life-cycle.
Such a requirements specification should be the basis for
both software design and implementation. In addition, when
the requirements change, either because the original require-
ments were incorrect or because the required system behavior
needs to be modified or extended, the original requirements
specification should be revised to reflect the needed changes.
Once the system has been deployed, the requirements specifi-
cation can be used as the basis for developing new versions of
the system—many parts of the original specification should
be reusable without change or with minor changes in the new
requirements specification.

A major difference between our approach and previous ap-
proaches is that our goal is to teach practitioners the skills
needed to produce a rigorous software requirements specifi-
cation. Hence, although for all three projects, the interest of
NASA personnel was in the SCR tools and their utility for
improving NASA’s software development process, an impor-
tant question when we began these three independent efforts
was whether software developers could learn to produce an
acceptable requirements specification using the SCR method.
This paper presents a preliminary answer to this question.

The paper is organized as follows. Section 2 introduces the
three NASA systems. Section 3 presents a brief review of the
SCR method and tools. Section 4 presents excerpts from the
SCR specification of the requirements of one of the NASA
systems, the FDIR (Fault Detection, Isolation and Recovery)
software module, and describes two problems detected in the
requirements document for this module using SCR. Section 5
describes the lessons learned in applying SCR to the three
systems, Section 6 presents several recommendations, and
Section 7 presents some concluding remarks.

2. THREE NASA SYSTEMS

Recently, the SCR requirements method was applied to soft-
ware components of three NASA systems: a Fault Protection
Engine, which detects faults in the operation of a spacecraft
and determines how the system should respond to each fault;
a Fault Detection, Isolation and Recovery system, which, in
response to some undesirable event, outputs a failure notifica-
tion and raises one or more alarms; and an Incubator Display,
which allows a space crew to monitor and control on-orbit
science experiments. This section briefly describes each com-
ponent and the plan for applying the SCR method and tools to
that component. In each case, we developed, in conjunction
with NASA personnel, an SCR specification of a complex
portion of the required behavior of the component. The effort
we expended in producing the SCR specification was quite
modest: less than one week in the case of FDIR, less than
two weeks in the case of the Incubator Display, and about
three weeks in the case of the FPE.

Fault Protection Engine

The function of the Fault Protection Engine (FPE), the most
complex component of the Deep Impact Fault Protection Sys-
tem, is to detect faults in a spacecraft’s software and hard-
ware and to schedule, coordinate, and track responses to those
faults [6]. The FPE uses a relatively complex algorithm to
decide how the system is required to respond to a fault, e.g.,
when it is responding to a previously detected fault. The ob-
jective of applying SCR to the FPE was to construct a com-
plete, formal SCR specification of the required external be-
havior of the FPE and, based on the specification, to auto-
matically generate a set of test cases satisfying a given cover-
age criterion using the technique described in [7]. The over-
all goal of the project was to assess the utility of the gener-
ated test cases for evaluating a software implementation of
the FPE. Figure 1 illustrates the FPE’s required behavior.

Fault Detection, Isolation and Recovery

The Fault Detection, Isolation, and Recovery (FDIR) mod-
ule is part of the Thermal Radiator Rotary Joint Manager
(TRRJM) software, whose function is to position the ther-
mal radiators of the International Space Station in an on-edge
orientation to the sun to maximize heat dissipation from the
radiators. FDIR processing for the TRRJM subsystem is
safety-critical because failure to detect, isolate, and recover
from faults could lead to serious damage to the radiators. The



Figure 1. Required behavior of the Fault Protection Engine.

Figure 2. Monitored and controlled variables, modes, and
terms in the SCR specification of FDIR

objective of applying SCR to FDIR was to evaluate the utility
of the SCR tools in detecting errors in the FDIR requirements
documentation.

Incubator Display

The Incubator Display is a component of the biological lab-
oratory developed for use on-orbit on the International Space
Station. It provides the human interface for controlling
the Incubator, a habitat drawer whose purpose is to pro-
vide temperature-controlled environments for scientific ex-
periments, and to monitor operations of the experiments con-
tained in the Incubator Experiment Chamber. The objective
of applying SCR to the Incubator Display was to evaluate
the utility of SCR for representing the display’s requirements
and for simulating the required behavior of the display soft-
ware using a graphical user interface. Figure 3 illustrates one
screen of the Incubator Display’s interface.

3. OVERVIEW OF SCR

In an SCR specification of a system’s requirements [10], [12],
monitoredand controlled variablesrepresent the quantities

in the system environment that the system monitors and con-
trols. The required system behavior is specified as relations
that the system must maintain between the monitored and
controlled variables. To specify these relations concisely, the
SCR language provides two classes of auxiliary variables—
terms andmode classes—as well as conditions and events. A
condition is a predicate defined on a system state. A basic
event, represented as@T(c), indicates that conditionc changes
from false to true. The event@F(c) is defined by@T(¬c). If c’s
value in the current state is denotedc and its value in the next
state asc′, then the semantics of@T(c) is defined by¬c ∧ c′

and the semantics of@F(c) by c ∧ ¬c′. A conditioned event,
denoted@T(c) WHEN d, adds a qualifying conditiond to an
event and has the semantics¬c ∧ c′ ∧ d.

In SCR specifications, the monitored variables representin-
dependent variables, and the mode classes, terms, and con-
trolled variables representdependent variables. SCR spec-
ifications define the values of the dependent variables using
three types of tables:condition, event, andmode transition
tables. The value of each term and controlled variable is de-
fined by either a condition or an event table. To indicate a
mode change, a mode transition table maps the current mode
and a conditioned event to the new mode.

4. SCR SPECIFICATION OF FDIR

To illustrate the SCR method and notation, this section gives
more details of the required behavior of FDIR and then
presents an excerpt from the SCR specification of the FDIR
requirements. It also describes two problems detected in the
original FDIR requirements documentation when the SCR
method was applied.

Figure 2 shows the inputs, outputs, and modes of FDIR and
how they could be represented using SCR constructs. Shown



Figure 3. User interface of the Incubator Display.

in the figure are seven of FDIR’s inputs represented as mon-
itored variables; for example,mPosition Err is a boolean
indicating whether a position error has been detected, while
mUser Command indicates one of several user commands. At
any given time, the system is in one of seven modes, either
Standby, Shutdown, Blind, Checkout, Switchover, Auto
Track, or DirectedPosition. (Figure 2 omits one FDIR
mode and excludes some of the FDIR mode transitions.) The
controlled variables,cAlarm1, cAlarm2, and cRecovery,
represent three system outputs, i.e., two alarms and the
recovery action. To make it concise, the SCR speci-
fication also includes two terms,tAutotrack Fail and
tPers Autotrack Fail.

Example: Required response to a failure condition

The FDIR requirements documentation that we received from
NASA consisted of 1) a table listing the set of failure condi-
tions and the required response to each condition, and 2) a
finite state diagram showing the FDIR modes, mode transi-
tions, and input events triggering the transitions. Table 1 con-
tains excerpts from item 1). According to the NASA contrac-
tor who provided the table, each row of this table, such as the
row with ID 5, is interpreted as follows:1

(*) IF Failure Detection Phase
AND IF Persistence Time=None

THEN Failure Criteria holds
ELSE Failure Criteria holds

for Persistence Time
ENDIF

THEN
DO Failure Notifications AND
IF NOT Inhibit THEN

DO Recovery Response
ENDIF

ENDIF

1A variant of these semantics applies to the pairs of rows (ID 1a and ID
1b) and (ID 7 and ID 8). See the Appendix for details.

Consider the failure condition named “Blind Ops Timeout
Exceeded” with ID 5 in Table 1. Given the above interpre-
tation, the rule for responding to this failure condition is de-
fined as follows: If a) the FDIR system is in the modeBlind
andTorque Motor is on and b) the time period that the sys-
tem has been in modeBlind exceeds “Limit + 1”, then is-
sue the failure notificationTime Limit Blind and, if the in-
hibit conditionInhibit Blind is false, make a transition to
Shutdown Mode.

Translating the example into SCR

Table 1 describes the required FDIR response to each input
event. The response may consist of one or more of the follow-
ing: a mode transition, the generation of one or more alarms,
or a recovery action. Alternatively, the response may be null.
This section describes how the requirements in Table 1 may
be expressed in three SCR tables, a mode transition table de-
scribing the conditions that cause the system to make a tran-
sition to a new mode, and two event tables, one defining the
value of a recovery action and the other the value of the fail-
ure notification, a caution warning alarm.

The entries in the third, fourth, fifth, seventh, and eighth
columns of In Table 1 specify the FDIR mode transitions:
The entry in the third column indicates the current mode
and (possibly) some condition that must hold, the entry in
the fourth column indicates another condition (possibly per-
sistent as indicated in the fifth column), the entry in the
eighth column indicates the condition which inhibits a re-
sponse to the failure condition, and the entry in the seventh
column indicates the mode change if any. Table 2 shows
an excerpt from the mode transition table defining the FDIR
mode transitions based on the information in Table 1. For
the row in Table 1 with ID 5, the corresponding row in Ta-
ble 2 is the first row. This row states that if the current
mode isBlind and themBlind Timeout expires when the
conditionTorque Motor On is true and the inhibit condition
mInhibit Blind is false, then the system makes a transi-



1 2 3 4 5 6 7 8

Failure
Failure Detection Persistence Failure

ID Condition Phase Failure Criteria Time Notifications Recovery Response Inhibit
1a Failure to Autotrack PositionErr PersAutotrack Autotrack Transition to Inhibit

Autotrack: Mode ≥ Failure Failure, Switchover Mode String
response not AutotrackError Joint
inhibited Failure

1b Failure to Autotrack PositionErr PersAutotrack Autotrack Device Inhibit
Autotrack: Mode ≥ Failure Failure, PowerOff, String
response AutotrackError Joint Transition to
inhibited Failure Checkout Mode
... ... ... ... ... ... ...

5 Blind Ops Blind Mode Blind duration None Time Limit Transition to Inhibit
timeout and Torque > Limit + 1 Blind Shutdown Mode Blind
exceeded Motor On
... ... ... ... ... ... ...

7 String failure: Autotrack Receive CWAStr PersString Joint Transition to Inhibit
response Mode ing Failure Failure Failure Switchover Mode String
inhibited not

8 String failure: Autotrack Receive CWAStr PersString Joint Device Inhibit
response Mode ing Failure Failure Failure PowerOff, String
inhibited Transition to

Checkout Mode
... ... ... ... ... ... ...

Table 1. Excerpts from NASA’s original requirements document for FDIR

Current Mode Events New Mode
Blind @T(mBlind Timeout) WHEN Shutdown

(mTorque Motor On AND
NOT mInhibit Blind)

Autotrack @T(tPers Autotrack Fail) Switchover
WHEN (NOT Inhibit String)

Autotrack @T(tPers Autotrack Fail) Checkout
WHEN Inhibit String

... ... ...

Table 2. Excerpt from the mode transition table for FDIR

tion to modeShutdown. Note thatmBlind Timeout is an
abstract monitored variable that becomes true when the time
that the system has been in modeBlind exceedsLimit+1.2

The information in the third, fourth, fifth, and sixth columns
of Table 1 is also used to compute the value of the Caution
Warning Alarm, which we model ascAlarm1. The third
column indicates the current mode and possibly some con-
dition, the fourth column specifies a condition (possibly per-
sistent as indicated by the fifth column), and the sixth col-
umn indicates the value of the alarm. For example, for fail-
ure condition with ID 5 in Table 1, the corresponding row
in Table 3, the event table defining the value ofcAlarm1,
is the second row. This row states that if the current mode
is Blind and themBlind Timeout expires when the condi-
tion Torque Motor On is true, then the value ofcAlarm1
is Time Limit Blind. The entryNever in the second row
means that if the current mode isBlind, there is no event that
can changecAlarm1 to have the valueAutotrack Failure.

In Table 1, the third, fourth, fifth, seventh, and eighth columns
contain the information that defines the value of the recovery
action. The entry in the fifth column indicates thepersis-

2This operation could have been expressed more concretely using SCR’s
duration operator.

tence, the time that the condition defined in columns 3 and 4
must persist. In computing the recovery action, any entry in
the seventh column other than the destination mode is signif-
icant. For failure condition with ID 1b in Table 1, the sig-
nificant entry in the seventh column isDevice Power Off,
while for ID 1a there is no significant entry besides the mode
transition. For failure condition with ID 1b in Table 1, the
value of the recovery actioncRecovery is defined in the first
row and the last row of Table 4. These rows state that, if the
system is inAutotrack mode and the failure to autotrack has
persisted for some specified time3 whenInhibit String is
false, then the value ofcRecovery is None; if the system is
in Autotrack mode and the failure to autotrack has persisted
for some specified time whenInhibit String is true, then
the value ofcRecovery is Device Power Off.

Two Problems in the Original FDIR Requirements Document
The objective of a requirements document is to specify the set
of all acceptable system implementations. Hence, the docu-
ment should be free of implementation bias since any design
or implementation decision in a requirements document ex-
cludes some acceptable implementations. One serious exam-
ple of implementation bias in the original FDIR requirements
information was an internal continuation indicator for the fail-
ure condition ID 1. The function of this internal indicator
was to “trigger” two alternative failure conditions to obtain
an additional response indirectly. We eliminated this imple-
mentation bias by splitting the failure condition with ID 1
(in the original FDIR requirements document from which Ta-
ble 1 was extracted) into two failure conditions and including
the additional responses directly. The resulting failure con-
ditions are those with the IDs 1a and 1b in Table 1 (see the

3The details of persistence are expressed in the table defining
tPers Autotrack Fail, which has been omitted from this paper.



Mode Events
Autotrack @T(tPers Autotrack Fail) Never
Blind Never @T(mBlind Timeout)

WHEN mTorque Motor On

cAlarm1′ = Autotrack Failure Time Limit Blind

Table 3. Excerpt from event table defining Caution Warning AlarmcAlarm1

Mode Events
Autotrack @T(tPers Autotrack Fail) @T(tPers Autotrack Fail)

WHEN NOT mInhibit String WHEN mInhibit String
Blind @T(mBlind Timeout) Never

WHEN mTorque Motor On

cRecovery′ = None Device Power Off

Table 4. Excerpt from event table definingcRecovery

Appendix for the full details). This elimination took place in
the original FDIR requirements documentbeforetranslating
these requirements into SCR. Thus elimination of implemen-
tation bias from the original semi-formal tabular requirements
was independent of the formal method chosen to represent the
requirements.

Another error was detected when we used the information in
Table 1 to specify Table 4, the event table defining the value
of the recovery actioncRecovery. In examining Table 4, one
notes that a response ofDevice Power Off is required when
mInhibit String is true, while the response isNone when
mInhibit String is false. This seemed non-intuitive to us
since the objective of an Inhibitor is to inhibit a response,
while this does the reverse. In fact, this was a problem with
the stated requirements that was later fixed. However, this
case is not reflected in the nominal semantics (*) but rather
requires a detailed explanation from the domain experts.

5. LESSONSL EARNED

General Lessons Learned

Quality of the Requirements Document.The original require-
ments documentation of each of the three components was,
in varying degrees, ambiguous and imprecise. In the case of
the FPE, the required software behavior was described in both
natural language and in a Statecharts-like graphical notation.
Although the FPE requirements document provided us with
some intuition about the required software behavior, many
details of the behavior were difficult to understand, and some
of the documented requirements were ambiguous or incon-
sistent. In addition, the FPE requirements document omit-
ted some of the required behavior. The requirements docu-
ment for the Incubator Display was written solely in natural
language, and, as a result, this document also suffered from
imprecision and some incompleteness. The highest quality
requirements documentation was the tabular requirements in-
formation and the finite state diagram describing the required
behavior of the FDIR component. The tabular format distin-
guished important aspects of the required software behavior,
such as the details of the component’s inputs and outputs, and
the finite state diagram identified other significant require-
ments information, such as the system modes, the mode tran-

sitions, and the input events that could trigger mode transi-
tions.

Given the ambiguity, imprecision, and incompleteness of the
requirements documents of the three components, we relied
on application experts to clarify the required software behav-
ior and to provide the details of missing requirements infor-
mation. Access to these application experts was critical to
preparing a precise, unambiguous SCR requirements specifi-
cation. Such a requirements specification makes instances of
incompleteness obvious. Application experts can often pro-
vide the missing requirements information.

Utility of the SCR Tools.As mentioned in Section 1, the SCR
tools include various tools for validating and verifying the
documented requirements. Those SCR tools with the most
utility in formulating the requirements of the three NASA
systems were the SCR consistency checker and the SCR sim-
ulator. The consistency checker was valuable in detecting
instances of incompleteness and inconsistency in the tabu-
lar representation of the SCR-style requirements. It also ex-
posed less serious problems, such as syntax and type errors,
undefined and unused variables, and other errors and warn-
ings analogous to those a compiler detects in a program. The
simulator was useful in validation of the SCR specification
by application experts. Running the simulator, for example,
helped expose a serious error in the SCR specification of the
FPE requirements (in this case, the error was in the transla-
tion to SCR). The simulator was also valuable for exposing
aspects of the requirements that needed further clarification,
e.g., the assumptions on which the requirements are based,
the required response of a given system to a sequence of in-
put events, etc.

The more advanced verification tools made available by the
SCR toolset, e.g., the SPIN model checker [16], the theorem
provers (the TAME interface [1] to PVS [19] and SALSA [2],
and the invariant generator [17]) were not used in analyzing
the three SCR specifications since the scope of each of the
three efforts did not include advanced verification. The goal
in the FPE effort was to demonstrate the feasibility of test
case generation, while the goal in FDIR was to evaluate the
utility of the SCR method and tools for detecting specifica-



tion errors. A major goal for the Incubator Display effort
was to demonstrate the utility of SCR’s Graphical User Inter-
face builder. The utility of SCR’s advanced verification tech-
niques have already been demonstrated in other efforts (see,
e.g., [13], [18], and [11]).

Utility of the SCR-Style Requirements Method.In each of the
three cases, the NASA personnel and contractors with whom
we interacted were able to understand and evaluate the tabu-
lar and graphical notation that encode the SCR representation
of the required software behavior. They were also able to ap-
ply the SCR consistency checker and simulator. In each case,
these tools helped to detect various problems with the SCR re-
quirements specification. However, in none of the three cases
were the NASA personnel able to construct the initial SCR
representation of the required component behavior. How to
represent the required externally visible behavior of a compo-
nent in the SCR notation can be challenging for practitioners,
especially at the beginning. In each case, we generated the
initial SCR specification of the some significant aspect of the
required component behavior and presented it to the NASA
personnel, who were able to provide feedback on behavior
that we had captured incorrectly. Clearly, more guidance is
needed to help software developers construct a state machine
model of the required component behavior and to represent
that behavior in the form of tables.

Fault Protection Engine: Lessons Learned

Utility of Automatic Test Case Generation.Most of the time
and effort expended in the FPE effort was spent in construct-
ing the SCR specification of the FPE requirements. Once
the SCR specification was complete, applying the SCR test
case generator [7] was relatively straightforward. Applying
the test case generator to the SCR specification of the FPE
requirements produced a small set of test cases for evaluating
an FPE software implementation. These test cases were de-
signed to satisfy the Branch Coverage criterion, which guar-
antees that software corresponding to every statement in the
SCR specification is tested at least once. Unfortunately, due
to limited funding, the set of test cases were never used to
evaluate an FPE implementation.

Lack of Data Structures in the SCR Language.The lack of
support in the SCR language for data structures, such as ar-
rays and queues, made it difficult to specify some important
aspects of the required behavior of the FPE requirements. For
example, one major input to the FPE was a three-element
vector containing the IDs of three different priority requests
for responses to detected faults. The highest priority requests
were ground requests for responses, the next highest priority
requests were for interrupting responses, and the lowest prior-
ity requests were for non-interrupting responses. In addition,
if it is already processing a request, the FPE is required to
queue any new requests. Because the implementation of the
SCR toolset available at the time did not support either arrays
or queues, the SCR specification of the FPE requirements
represented these data structures using integers and booleans.

This made the FPE specification harder to understand and the
generation of test cases more complex than necessary. A new
prototype version of the SCR toolset supports both arrays and
queues and hence this shortcoming of the toolset has been re-
duced.

FDIR: Lessons Learned

Exposing Implementation Bias.As described in Section 4,
the SCR method was useful in exposing and removing im-
plementation bias from the documented FDIR requirements.
Interestingly, this problem was exposed, not by executing the
SCR tools, but by organizing the FDIR requirements infor-
mation in a different manner (see Table 1). The process of
defining the SCR variables led us to discover the problem of
implementation bias. The original requirement expressed the
need to “Trigger String Failure,” which was identified as an
internal event, not an external input. The lesson here is that
organizing the requirements with the SCR method can expose
undesirable aspects of the requirements document that other
organizations may not expose. Unlike many alternative speci-
fication languages, such as Statecharts [8] and Stateflow, SCR
requires a black-box representation of the requirements that
focuses on the externally visible behavior of the software—
i.e., The system inputs and outputs and the required relation
between them.

Importance of Explicit Semantics.When we first received
NASA’s tabular representation of the FDIR requirements, we
were not sure how to interpret the information in the table.
How to connect this information to the entities in an SCR-
style requirements document—e.g., to monitored and con-
trolled variables—was unclear. Translating the original re-
quirements information from the original NASA table to the
SCR representation removed this ambiguity. We were fortu-
nate to have an application expert available who could explain
the semantics of the NASA table. Without his expertise, the
translation to SCR would no doubt have been incorrect.

Incubator Display: Lessons Learned

Utility of a Graphical User Interface.Once an SCR require-
ments specification has been constructed, the SCR toolset al-
lows a user to design a graphical user interface to the SCR
simulator. Such an interface is extremely valuable because it
allows users to use the simulator to evaluate the correctness of
the underlying SCR requirements specification. By running
scenarios (i.e., sequences of monitored variable changes)
through the simulator, an application expert can check that
the specified behavior captures the intended behavior. The
existence of the graphical interface means that the applica-
tion expert can evaluate the specified requirements without
understanding the SCR tables or the underlying state machine
specification of the required behavior. The graphical front-
end that we built for the Incubator Display with a small effort
(approximately two days) was especially valuable.

Suitability of SCR for Specifying Reactive Systems.SCR is



customized for specifyingreactive systems, systems required
to produce certain outputs in response to certain inputs. In
reactive systems, there is a complex interaction between in-
puts, outputs, and system states (relevant parts of which are
often modeled by modes) that may be conveniently captured
in a state machine model. Although it was required to re-
spond to inputs, the Incubator Display was not the ideal sys-
tem to model in SCR since the nature of its responses mostly
followed the same straightforward (and rather uninteresting)
pattern of “In response to a user command to change some
incubator parameter (such as the temperature, lighting, or fan
speed), display the desired new value of the parameter.” Fur-
ther, the required response to each user command was in-
dependent of the Incubator Display’s response to each prior
command, so there was no concern about complex interac-
tions. This lack of complexity meant that the underlying SCR
state machine model was of limited value in representing the
requirements of the Incubator Display.

6. RECOMMENDATIONS

Based on our experience in specifying the requirements of
the three NASA components and, in particular, the lessons
learned in doing so, we make three recommendations for im-
proving the quality of requirements documents for safety-
critical aerospace systems.

Need for an Updated SCR-Style Requirements Document.In
1978, the SCR requirements method was introduced with the
publication of the requirements document for the Operational
Flight Program for the A-7 aircraft [14]. In 1980, a journal
paper was published describing the principles used in design-
ing the requirements document and providing numerous ex-
amples [15]. The A-7 requirements document was carefully
organized as a reference document: The goal of the document
was to make requirements information easy to find, to remove
redundancy, and to make the requirements information as pre-
cise, unambiguous, and complete as possible. Since 1980,
some new information could be added to the individual chap-
ters of an SCR requirement document; for example, a chapter
listing a set of abstract properties, e.g., the high level “shall”
statements in many NASA requirements documents, could be
added.

There is an urgent need to revise and extend the organization
of an SCR-style requirements document, such as the docu-
ment published in 1978. A fully worked out version of such
a document for an existing system, such as one of the com-
ponents described in this paper, would be valuable as an ex-
ample of how a rigorous requirements document should be
organized. It would also provide examples of how tables can
be used to specify the values of the system’s outputs, i.e., its
controlled variables, and other components of the software
requirements. Such an example requirements document will
serve two functions. First, it will provide an example of how
software practitioners can specify and organize requirements
information. Second, it will provide a repository for specifi-
cations that have been checked using tools. For example, the

SCR consistency checker can be used to check the tables in
the document for consistency and completeness. In addition,
the more advanced tools in the SCR toolset, e.g., SPIN and
TAME, could be used to check that the SCR specification sat-
isfies the set of abstract properties included in the document.

Need to Involve Requirements Experts.Based on our expe-
rience in applying the SCR method to many practical sys-
tems, including mission-critical Navy systems and the three
NASA components described above, our conclusion is that,
for the foreseeable future, software developers will need re-
quirements experts to help in formulating requirements docu-
ments in formal languages such as SCR. We believe it should
be sufficient for requirements experts to construct an initial
version of the requirements specification for some important
aspect of the required component behavior. Once practition-
ers have a good example of how to specify and organize re-
quirements documents in the SCR style, they should be able
to extend and modify the requirements document.

Need to Develop and Apply More Advanced Technology.In
eliciting and documenting requirements, applying some of
the more advanced technology, such as advanced verifica-
tion techniques, should help improve the quality of software
requirements specification. In addition, once a software re-
quirements specification has been validated (e.g., by appli-
cation experts using a simulator) and verified (e.g., using a
model checker or a theorem prover), it can be used as the ba-
sis for automatically generating test cases or for automatically
generating efficient source code in a high level language such
as C or Java (see, e.g., [20]). The use of this advanced tech-
nology should lead to significant improvements in the quality
of both requirements specifications and software; it should
also decrease the cost of producing reliable software.

7. CONCLUSIONS

Although this paper has focused on the SCR method for re-
quirements specification, other rigorous requirements meth-
ods, such as RSML and its variants SpecTRM [21] and
RSML−e [9], should also be considered for formally spec-
ifying and formally analyzing software requirements. By
weeding out errors early in the development process when
they are cheap to correct, using more rigorous requirements
methods and tools designed to improve the quality of require-
ments specifications (e.g., consistency checkers, simulators,
and advanced verification tools) should produce both higher
quality requirements specifications and higher quality, more
reliable software. Moreover, the existence of high quality
requirements specifications can help lower the cost of both
producing test cases for evaluating hand-coded software and
constructing efficient code by constructing the code automat-
ically from the specifications.
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9. APPENDIX

This appendix presents the details of the implementation bias
detected in the FDIR requirements document and how the
bias was eliminated. To simplify the explanation, we define a
number of abbreviations, each of which (excepti) describes
externally visible behavior.A, B, C, andD represent FDIR
inputs treated essentially as boolean expressions, whileX, Y ,
Q, andR represent FDIR responses.

A “In Autotrack Mode”
D “Position Err≥ AutotrackError holds for

PersAutotrackFailure”
i “String Failure”
X “Autotrack Failure”
B “CWA String Failure holds for PersString”
C “Inhibit String”
Y “Joint Failure”
Q “Transition to Switchover Mode”
R “Device PowerOff, Transition to Checkout Mode”

There are two exceptions to the nominal semantics (*) for in-
terpreting the rows of the original FDIR requirements shown
in Table 1. The semantics of ID 7, which indicates “response
not inhibited” in Failure Condition is defined by:

IF Failure Detection Phase
AND Failure Criteria holds for

Persistence Time
AND NOT Inhibit

THEN
DO Failure Notifications AND
DO Recovery Response

ENDIF

The semantics of ID 8, which indicates “response inhibited”
in Failure Condition, is defined by:

IF Failure Detection Phase
AND Failure Criteria holds for

Persistence Time
AND Inhibit

THEN
DO Failure Notifications AND
DO Recovery Response

ENDIF

Using (1) the original table expressing the semantics of FDIR
processing, (2) the above abbreviations, (3) the semantics for
ID 1 given by (*), and (4) the special case semantics for ID

7 and ID 8 given immediately above, the semantics for these
three cases may be expressed as shown below (“DO x,y,...”
abbreviates “DO x AND DO y AND ...”):

ID 1: IF A AND D DO X, i:=true
ID 7: IF A AND (B OR i) AND NOT C DO Y , Q
ID 8: IF A AND (B OR i) AND C DO Y , R

The internal continuation indicatori is treated in a special
way: if bothA andD hold, the system should performX and
set i to true. Settingi in turn triggers processing via either
ID 7 or ID 8 (depending upon whetherC is falseor true) to
provide additional responsesY andQ or Y andR, respec-
tively. Not only is the indicatori an artifact of “reusing” the
requirements, but the sequencing of responsesY andQ or Y
andR after responseX is also artificial.

To remove the implementation bias, we eliminated the inter-
nal triggeri and sequencing of responses by splitting ID 1 into
two cases ID 1a and ID 1b that now directly incorporate the
respective additional responsesY,Q or Y,R as shown below:

ID 1a: IFA AND D AND NOT C DO X, Y , Q
ID 1b: IF A AND D AND C DO X, Y , R
ID 7: IF A AND B AND NOT C DO Y , Q
ID 8: IF A AND B AND C DO Y , R

Translating back to the tabular form Table 1 shows the com-
plete version of rows ID 1a and ID 1b corresponding to the
abbreviated forms above. Note that ID 1a and ID 1b now have
the same special case semantics as the respective ID 7 and ID
8.
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